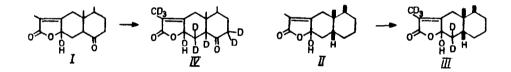
SESQUITERPENIC LACTONES FROM SMYRNIUM OLUSATRUM L. ROOTS⁺ A. Ulubelen, S. Öksüz Faculty of Pharmacy, University of Istanbul, Istanbul, Turkey Z. Samek, M. Holub Institute of Organic Chemistry and Biochemistry, Czechoslowak Academy of Sciences, Prague

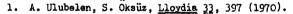
(Received in UK 7 October 1971; accepted for publication 15 October 1971)

Recently the presence of two flavonoid glycosides in the leaves and stems of Smyrnium olusatrum L. (Umbelliferae) has been described¹. We investigated now the components from the roots of the mentioned species and isolated two sesquiterpenic lactones to which we gave the names istanbulin-A and istanbulin-B.

Istanbulin A, m.p. 246°C and $[\alpha]_D^{24}$ +81.5°, has the composition $C_{15}H_{20}O_4$ (m/e 264). From its IR (CHCl,) and UV spectra (ethanol) it followed that a keto-group in a six-membered or larger ring is probably present in its molecule (1711 cm⁻¹; 285 nm, log ε 2.2), further an α_{β} -unsaturated y-lactone group (1758 cm⁻¹; 221 nm, log ε 4.16), and a free hydroxy-group (3380 and 3565 cm⁻¹). In the PMR- spectrum of istanbulin-A (HA-100; CDC1, TMS) the hydroxy-group proton gave a broad signal at 4.05 ppm, and after conversion to an amidic proton with trichloroacetylisocyanate² a broadened singlet at 9.35 ppm (1 H). In the PMR-spectrum of istanbulin-A and of its adduct with trichloroacetylisocyanate² no characteristic signals of the CH-O type protons or of vinylic protons were observed. From this it followed that the hydroxy-group is tertiary, and that under the assumption that an $\alpha_i\beta$ -unsaturated γ -lactone ring is present in the molecule the corresponding double bond must be endocyclic and tetrasubstituted. The PNR-spectrum also indicated the presence of one tertiary C-methyl group (singlet, 3 H, 0.53 ppm), one secondary methyl group of the $_{CH_3}$ -CH (doublet, 3 H, 1.01 ppm, J=6.5; the corresponding methine proton found by DR at 2 ppm), C type an ABX, spin system (confirmed by DR) formed by protons of one methyl group (doublet, 3 H, 1.8Cppm, J=1.3 Hz) and two methine protons of sp³-type (\underline{H}_A : sharp doublet, 2.61 ppm, J_{AB} =13.5, $J_{AX} \sim 0$; \underline{H}_{R} : broadened doublet, partly overlapped by the signals of other protons, 2.30 ppm, J_{BA} =13.5 Hz, J_{HY} =1.3 Hz), corresponding probably to a fragment of the CH₂-C=C-CH₂-C-type, and an isolated three-spin system (found by tickling experiments) composed of three quartets of methine protons of sp³-type (δ_1 =2.82 ppm, δ_2 =2.40 ppm, δ_3 =1.70 ppm, $J_{1,2}$ =+3.5 Hz, $J_{1,3}$ =+13 Hz, and $J_{2,3}$ =-14 Hz; first-order analysis, confirmed by tickling experiments in benzene solution) which corresponds to a fragment of the -C-CH -CH-C-type.


From the sum of these spectral data it followed that istanbulin-A is probably a sesquiterpenic lactone of the eremophilenolide type and that its structure corresponds to 1-oxo-8-hydroxyeremophilenolide I. The identity of the hydroxy butenolide chromophor of istanbulin-A (I) and 8-hydroxyeremophilenolide (II)³ also followed from the direct comparison of IR, UV, and PMR spectra and the

On Terpenes. CCXII. Preceding communication: Tetrahedron Letters 1971, 2679.


deuteration of both substances, I and II. 8-Hydroxyeremophilenolide (II) has a similar maximum at 223 nm (log ϵ 4.01) in its UV spectrum, as well as similar frequencies characteristic of a hydroxyl group (3380 and 3580 cm⁻¹) and a α , β -unsaturated γ -lactone carbonyl (1759 cm⁻¹) and in the PMR spectrum (HA-100; CDCl₃, TMS) an isolated AEX₃-system of protons bound to C₍₁₃₎ and C(6) (H₍₁₃₎: doublet, 1.79 ppm, J_{13,6ax}=1.6 Hz; $\underline{H}_{(6eq)}$: sharp doublet, 2.77 ppm, ^{2J}_{6,6}.⁻¹ 13.7 Hz, J_{6eq,13}~°0; $\underline{H}_{(6ax)}$: broadened doublet, 2.09 ppm, partly overlapped by the signals of other protons, J_{6ax,13}=1.6 Hz)^{4,5} On deuteration of 8-hydroxyeremophilenolide (II) we obtained a substance which according to its mass spectrum (m/e 255, 236 (255-19)), and PMR spectrum (the doublet of H₍₁₃₎ at 1.79 ppm absent; $\underline{H}_{(6eq)}$: doublet, 2.77 ppm, ²J_{6,6}.^{-13.5} Hz; $\underline{H}_{(6ax)}$: doublet, 2.09 ppm) was composed predominantly of molecules the structure of which is expressed by formula III. Deuteration of istanbulin-A (I) gave a substance which according to its mass spectrum (m/e 272, 253 (272-19)) and PMR spectrum (the doublet of a methyl at 1.80 ppm and an isolated three-spin system of the $-\frac{1}{c}$ -CH₂-CH- $\frac{1}{c}$ - fragment were absent; \underline{H}_{A} : doublet, 2.63 ppm, and \underline{H}_{B} : broadened doublet, 2.30 ppm, J_{AB}= 13.3 Hz) contained predominantly a compound represented by formula IV, in agreement with the proposed formula I for istanbulin-A.

Istanbulin-B, m.p. 167°C, of the composition $C_{15}H_{20}O_3$ (m/e 248) was isolated only in a very small amount and the study of its structure is not yet completed.

Istanbulin-A (I) is the first sesquiterpenic lactone related to the eremophilane found and identified in a plant of the Umbelliferae family.

REFERENCES

- 2. I.R. Trehan, C. Monder, A.K. Bose, Tetrahedron Letters 1968, 67.
- 3. L. Novotný, V. Herout, F. Šorm, Collection Czechoslov. Chem. Commun. 29, 2182 (1964).
- 4. L. Novotný, Z. Samek, F. Šorm, Collection Czechoslov. Chem. Commun. 31, 371 (1966).
- 5. A more detailed study of the PMR-spectra of various eremophilenolides which were isolated in the Prague laboratory as autooxidation products of furanceremophilenes will be a subject of a separate communication.